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1. INTRODUCTION 

 It is well known that the BFKL pomeron [1] gives the 
anomalous dimensions of leading-twist gluon operators at all 
orders near the unphysical point with number of covariant 
derivatives equal to minus one. The exact statement is that 
the analytical continuation of anomalous dimension of twist-
two gluon operator 

 
OF

n ≡ Fµ−
a ∇−

j−2F −
µa  (1) 

to the point j =1  is determined by the BFKL equation. The 
anomalous dimensions are singular at that point and there is 
a new hierarchy of perturbation theory 

γ (α s ,n) ~∑α s
m ( α s

j −1
)n−m . In the leading order ~ ( α s

j −1
)n  the 

relation to the BFKL pomeron was established long ago [2] 
and for the next-to-leading order BFKL it was done in papers 
[3]. This constitutes a powerful check for explicit 
calculations of higher-order anomalous dimensions both in 
QCD [4] and  N =4 SYM [5]. However, the explicit 
meaning of these “local operators at the unphysical point” 
was somewhat obscure. I argue that these operators should 
be understood as gluon light-ray operators and BFKL 
equation gives the anomalous dimensions of these light-ray 
operators at some specific point. 

 First, let me remind the standard argument about 
analytical continuation. It is well known that the moments of 
structure functions are proportional to matrix elements of 
twist-2 operators. The Q2  behavior of structure functions are 
governed by anomalous dimensions of these operators 
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µ d
dµ

Fµ−
a ∇−

n−2F −
µa = γ (α s ,n)Fµ−

a ∇−
n−2F −

µa  (2) 

 As I mentioned, the BFKL pomeron determines the 
asymptotics of these anomalous dimension at the “non-
physical” point n =1 . The standard argument goes like that: 
in the framework of the BFKL approach the amplitude of, 
say, virtual γ ∗γ ∗  scattering has the form 

A(s) = ∫dνF(ν ) ( s
QP

)ℵ(ν ) (Q
2

P2 )iν
 

where ℵ(ν )  is the pomeron intercept (the explicit form is 
given by Eq. (41) below) where Q2 = −q2  and p2 = −P2  are 
virtualities of the two photons and s = (p + q)2 . The case of 
DIS corresponds to Q2 >> P2  and the Regge limit of small-x 
DIS to s >>Q2  

 Rewriting this in terms of Bjorken xB =Q
2 / s  one gets 

A(s) = ∫dνF(ν ) xB
−ℵ(ν ) (Q

2

P2 )iν+12ℵ(ν )  (3) 

which turns to 

 
A(xB,Q2 ) = s

QP∫dνF(ν ) xB
− ℵ(ν ) (Q

2

P2 )iν  (4) 

after the shift 

ν − i
2
ℵ(ν )→ν  (5) 

 The n -th moment of the structure function is given by 

 
Mn = 

0

1

∫ dxB xB
nA(xB,Q2 ) = 

12−i∞

12+i∞

∫ dξ F(ξ )
n − ℵ(ξ )

( Q
P2

2

)ξ  (6) 
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where ξ ≡ 1
2
+ iν . Now let us consider the integral (6) at 

n =ω → 0 . The contour goes parallel to imaginary axis but 

we can close it on the poles of the function 
 

1
ω − ℵ(ξ )

. The 

expansion of  
ℵ(ξ)  at small ξ  has the form 

 
ℵ(ξ ) = α sNc

2πξ
+ α s

2Nc
2

8π 2ξ
ζ (3)+O(α s

3)
 

so we get 

Mω  = 
0

1

∫ dxB xB
ωA(xB,Q2 ) = (Q

2

P2 )γ (ω )  (7) 

where 

γ (α s ,ω ) = − 2α sNc

πω
 + [0 +ζ (3)ω ](α sNc

πω
))3 + ...

 (8) 
 Since 

Mn = 
0

1

∫ dxB xB
nA(xB,Q2 ) = (Q

2

P2 )γ n  (9) 

we see that the series (8) giver the analytical continuation of 
the anomalous dimensions of twist-2 operators (1) at the 
point n→ 1  which can be formally denoted as F− i∇

−1F−
 i . 

 This method, however, does not tell us the explicit form 
of this operator and in this paper I will demonstrate that 
F− i∇

ω−1F−
 i  is actually a light-ray operator ( j ≡ ω +1 ) 

 

F j (x⊥ ) = 

0

∞

∫ dL+ L+
1− j∫dx+ F− i

a (L+ + x+ + x⊥ )[L+ + x+ , x+ ]ab F−
bi (x+ + x⊥ )

 (10) 

and the anomalous dimension of this operator γ ( j;α s )  is an 
analytic continuation of the anomalous dimension (2) of 
local operators. 

 For simplicity this will be done in  N = 4  SYM where 
the conformal invariance simplifies many formulas for the 
correlation functions. The method to get the anomalous 
dimensions of the light-ray operator (10) near j =1  will be 
to calculate a 4-point correlation function of certain 
operators in the double “Regge+DIS” limit s >>Q2 >> P2 . 
We will compare two calculations of this 4-point CF: with 
Regge limit first and DGLAP limit second, or vice versa, and 
demonstrate that the intercept of the BFKL pomeron ℵ(ν )  
determines the anomalous dimensions in this region. 
However, first we need to discuss some properties of light-
ray operators. 

2. LIGHT-RAY OPERATORS 

2.1. Light-Ray Operators in Gluodynamics 

 For simplicity, let us at first look at gluodynamics. For 
our purposes it is sufficient to consider “forward” light-ray 
operator 

F(L+ , x⊥ ) = ∫dx+ F− i
a (L+ + x+ + x⊥ )[L+ + x+ , x+ ]ab F−

bi (x+ + x⊥ )  (11) 

 Evolution equation for “forward” operators has the form 
(see e.g. Ref. [6]) 

µ d
dµ

F(L+ , x⊥ ) = 
0

1

∫ du Kgg (u,α s )F(uL+ , x⊥ )   (12) 

 Note that since the matrix element of the light-ray 
operator (11) defines gluon parton density 

zµzν 〈p | Fµξ
a (z)[z,0]ab Fν

bξ (0) | p〉µ  =
z2=0

 2(pz)2

0

1

∫ dxB xBDg (xB,µ)cos(pz)xB  
the kernel 

u−1Kgg (u) = 2α sNcπ (uu + [ 1
uu

]+ − 2 + 11
12

δ (u ))+

higher orders in α s

 (13) 

is actually a DGLAP kernel (in gluodynamics). 
 The anomalous dimensions of local twist-2 operators (1) 
is determined by the kernel (13) 

 
γ n (α s ) = −

0

1

∫ du un−2Kgg (u,α s )      µ
d
dµ

On
g = −γ n (α s )On

g  (14) 

 Now consider the anomalous dimensions of LR operator 
(10). Cobining Eqs. (10) and (12) one obtains 

 
µ d
dµ

F j (z⊥ ) = 
0

1

∫ du Kgg (u,α s )u
j−2F j (z⊥ )  

 Thus, we see that the anomalous dimension of light-ray 
operators (11) is an analytical continuation of anomalous 
dimensions of local operators to non-integer j. 

2.2. Singlet light-ray operators in N = 4 SYM 

 In N = 4  SYM, in addition to the gluon operators (1) 
there are twist-2 local gluino and scalar operators (as usual, 
we consider only “forward” highest weight local operators). 
Similarly to Eq. (11) we can define gluino and scalar light-
ray operators (of even parity) 

Φ(x+ , x⊥ ) = ∫d ′x+ ϕ I
a (x+ + ′x+ + x⊥ )[x+ , ′x+ ]ab∇−

2ϕ I
b ( ′x+ + x⊥ )  

Λ(x+ , x⊥ ) = i2∫d ′x+[λA
a (x+ + ′x+ + x⊥ )[x+ + ′x+ , ′x+ ]abσ −∇−λA

b ( ′x+ + x⊥ )  

− λA
a ( ′x+ + x⊥ )[x+ + ′x+ , x+ ]abσ −∇−λA

b (x+ + ′x+ + x⊥ )]  

G(x+ , x⊥ ) = ∫d ′x+F− i
a (x+ + ′x+ + x⊥ )[x+ + ′x+ , ′x+ ]ab F−

bi ( ′x+ + x⊥ )  (15) 

 The evolution equations have the form similar to (12) 

µ d
dµ

Φ(x+ ) = 
0

1

∫ du [KϕϕΦ(ux+ )+ KϕλΛ(ux+ )+ KϕgG(ux+ )]  

µ d
dµ

Λ(x+ ) = 
0

1

∫ du [KλϕΦ(ux+ )+ KλλΛ(ux+ )+ KλgG(ux+ )]  

µ d
dµ

G(x+ ) = 
0

1

∫ du [KgϕΦ(ux+ )+ KgλΛ(ux+ )+ KggG(ux+ )]  (16) 

where Kij = Kij (u,α s )  is a function of u  and α s . The 
expansion in powers of x+  gives anomalous dimensions of 
local operators 
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Φ(x+ , x⊥ ) = ∑ x+

n−2

(n − 2)!
Oϕ

n (x⊥ ),    Λ(x+ , x⊥ ) = ∑ x+
n−2 (x⊥ )

(n − 2)!
Oλ

n ,  

G(x+ , x⊥ ) = ∑x+
n−2 (n − 2)!Og

n (x⊥ )  (17) 

where 

 
Oϕ

n (x⊥ ) = ∫d ′x+ ϕAB
a ∇−

nϕ ABa ( ′x+ + x⊥ ),    

 
Oλ

n (x⊥ ) = ∫d ′x+ iλA
a∇−

n−1σ −λA
a ( ′x+ + x⊥ )

 

 
Og

n (x⊥ ) = ∫d ′x+ F− i
a∇−

n−2F−
ai ( ′x+ + x⊥ ),    (18) 

 Matrix of anomalous dimensions for these “forward” 
local operators has the form 

 
µ d
dµ

Oϕ
n = 

0

1

∫ du un−2[KϕϕOϕ
n + KϕλOλ

n + KϕgOg
n ]

 

 
µ d
dµ

Oλ
n = 

0

1

∫ du un−2[KλϕOϕ
n + KλλOλ

n + KλgOg
n ]  

 
µ d
dµ

Og
n = 

0

1

∫ du un−2[KgϕOϕ
n + KgλOλ

n + KggOg
n ]  (19) 

 The renorm-invariant combinations were found in Ref. 
[7]: 

 
S1
n =  Og

n + 1
4

?Oλ
n − 1

2
Oϕ

n  

 
S2
n = Og

n − 1
4(n −1)

Oλ
n + (n +1)

6(n −1)
Oϕ

n  

 
S3
n = Og

n − n + 2
2(n −1)

Oλ
n − (n +1)(n + 2)

2n(n −1)
 (20) 

 The corresponding anomalous dimensions read 

γ n
S1 (α s ) = 4[ψ (n −1)+ γ E ]+O(α s

2 ),     γ n
S2  = γ n+1

S1 ,     γ n
S3 = γ n+2

S1  (21) 

 Now we define 

Φ j (x⊥ ) = 
0

∞

∫ dx+ x+
− j+1Φ(x+ , x⊥ ),   Λ j (x⊥ ) = 

0

∞

∫ dx+ x+
− j+1Λ(x+ , x⊥ )  

Gj (x⊥ ) = 
0

∞

∫ dx+ x+
− j+1G(x+ , x⊥ )  (22) 

 From Eq. (16) we get the martix of anomalous 
dimensions for these LR opertaors 

µ d
dµ

Φ j  = 
0

1

∫ du u j−2[Kϕϕ (u,α s )Φ j + Kϕλ (u,α s )Λ j + Kϕg (u,α s )Gj ]  

µ d
dµ

Λ j  = 
0

1

∫ du u j−2[Kλϕ (u,α s )Φ j + Kλλ (u,α s )Λ j + Kλg (u,α s )Gj ]  

µ d
dµ

Gj  = 
0

1

∫ du u j−2[Kgϕ (u,α s )Φ j + Kgλ (u,α s )Λ j + Kgg (u,α s )Gj ]  (23) 

 Since the matrix (23) is an analytical continuation of the 
matrix (16) so are the eigenvectors and eigenfunctions and 
therefore 
 

S1
j  = Gj +

1
4
Λ j −

1
2
Φ j ,         S2

j  = Gj −
1

4( j −1)
Λ j +

j +1
6( j −1)

Φ j  

S3
j  = Gj −

j + 2
2( j −1)

Λ j −
( j +1)( j + 2)

2 j( j −1)
Φ j  (24) 

are the multiplicatively renormalized operators with 
anomalous dimensions 

γ j
S1 (α s ) = 4[ψ ( j −1)+ γ E ]+O(α s

2 ),     γ j
S2  = γ j+1

S1 ,     γ j
S3 = γ j+2

S1  (25) 

 Note that at high energy ( ≡ j→ 1 ) only the contribution 
of S1  survives because at small ω = j −1  the anomalous 
dimension of S1  is negative while those of S2  and S3  are 
non-negative and hence we omit contributions of S2  and S3  
operators in what follows. 

 For future use we need also the operators with the light 
rays going along the x−  direction defined as 

 
Φ j (x⊥ ) = 

0

∞

∫ dx− x−
− j−1Φ(x− , x⊥ )  (26) 

= ∫dx−d ′x−θ(x− ) x−
− j−1ϕAB

a (x− + ′x− + x⊥ )[x− , ′x− ]abϕ ABb ( ′x− + x⊥ )
 

and similarly for  
Λ j ,  
Gj  and  

Sj  operators. 

3. DGLAP REPRESENTATION OF 4-POINT 
CORRELATION FUNCTION 

 To get the anomalous dimensions of light-ray operators 
(24) near j =1  we consider the correlation function of four 
Konishi operators in the double BFKL + DGLAP limit. 
Define 

 A(x1, x2, x3, x4 ) = µ−4 (µ4x12
2 x34

2 )2+γ k 〈O (x1)O (x2 )O (x3)O (x4 )〉  (27) 

where O =ϕ I
aϕ I

a  is the Konishi operator ( γ K  - anomalous 
dimension). The Regge limit is 

x1+ → ρx1+ , x2+ → ρx2+ ,     x3− → ′ρ x3− , x4− → ′ρ x4−    
with     
ρ ′ρ → ∞

 (28) 

and the DGLAP limit corresponds to x12
2 → 0 . It is 

convenient to consider “forward” correlation function 

A(L+ ,L−;x1⊥
, x2⊥

, x3⊥
, x4⊥

) = µ−4 (µ4x12
2 x34

2 )2+γ k  (29) 

 
× ∫dx2+

dx3−
 〈O (L+ + x2+

, x1⊥
)O (x2+

, x2⊥
)O (L− + x4−

, x3⊥
)O (x4−

, x4⊥
)〉  

in the double limit: Regge ( L+L− → ∞ ) plus DGLAP ( 
x12
2 → 0 ). 

 First we look at the CF (29) in the DGLAP limit. In this 
limit we need to expand the product two Konishi operators 
near the light cone with the leading term being twist-two 
light-ray operators (24). To get the coefficient functions in 
this expansion it is convenient to discuss first the three-point  
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correlation function of a LR operator with two local 
operators. The correlation function of three local operators is 
fixed by conformal invariance. In our case it yields 

 

〈S1n (z1)O (z2 )O (z3)〉
(µ2z23

2 )γ K
 =

 cn[1+ (−1)n ]
z12

2 z13
2 z23

2

z12−

z12
2 −

z13−

z13
2

⎛

⎝⎜
⎞

⎠⎟

n
µ−2z23

2

z12
2 z13

2

⎛
⎝⎜

⎞
⎠⎟

12γ (n,αs )  (30) 

For the CF of “forward” operator (15) and two local 
operators we get 

x23⊥
2 (µ2x23⊥

2 )γ K12π i∫dx1+
〈S1n (x1+

, x1⊥
)O(x2−

, x2⊥
)O(x3−

, x3⊥
)〉  (31) 

= − cn[1+ (−1)n ]
x23⊥

4
Γ(1+ 2n + γ n )
Γ2 (1+ n +12γ n )

(
x23⊥

2

x2−x3−

)1+γ n 2 (
x12⊥

2

x2−

+
x13⊥

2

x3−

)−1−n−γ n  

 Since a light-ray operator S1 j  is an “analytical 

continuation” of a local operator S1
n  to non-integer n  the CF 

of light-ray operator and two local operators has similar form 

 
x23⊥

2 (µ2x23⊥
2 )γ K 〈S1 j (x1⊥

)O (x2−
, x2⊥

)O (x3−
, x3⊥

)〉  (32) 

= − 2π i
cj[1+ e

iπ j ]
x23⊥

4

Γ(1+ 2 j + γ j )
Γ2 (1+ j +12γ j )

(
x23⊥

2

x2−x3−

)
1+γ j 2

(
x12⊥

2

x2−

+
x13⊥

2

x3−

)
−1− j−γ j  

 Integrating this over the total translation in x−  direction 
we get 

 
x23⊥

2 (µ2x23⊥
2 )γ K ∫dx3−

〈S1 j (x1⊥
)O (L− + x3−

, x2⊥
)O (x3−

, x3⊥
)〉  

= 
0

1

∫ du c( j,α s )[1+ e
iπ j ]L−

j (uu) j

[x12⊥
2 u + x13⊥

2 u ]1+ j (
uuµ−2x23⊥

2

[x12⊥
2 u + x13⊥

2 u ]2 )12γ ( j ,αs )  (33) 

 To get the expansion of ∫dx3−O(L− + x3− , x2⊥ )O(x3− , x3⊥ )  

as x23⊥ → 0  one compares Eq. (33) to the CF of two light-

ray operators 

 

〈S
j=3
2
+iν
(x1⊥ )

S
′j =3
2
+i ′ν
(x3⊥ )〉 =

δ (ν − ′ν )a( j,α s )
(x13⊥

2 ) j+1(x13⊥
2 µ2 )γ ( j ,αs )

 (34) 

 One obtains 

 
x23⊥

2 (µ2x23⊥
2 )γ K ∫dx3−

 O (L− + x2−
, x2⊥

)O (x3−
, x3⊥

)  

= 
12−i∞

12+i∞

∫ dj c( j,α s )[1+ e
iπ j ]L−

j (µ2x23⊥
2 )γ ( j ,αs )S1 j (x3⊥

)  (35) 

 It is easy to see that the substitution of Eq. (34) to the 
r.h.s. of this equation reproduces the 3-point CF (33). Similar 
result with exchange of x−  and x+  directions reads 

 
x12⊥

2 (µ2x12⊥
2 )γ K ∫dx1+

 O (L+ + x2+
, x1⊥

)O (x2+
, x2⊥

)
 

= 
12−i∞

12+i∞

∫ dj c( j,α s )[1+ e
iπ j ]L+

j (µ2x12⊥
2 )γ ( j ,αs )Sj

+ (x1⊥
)  (36) 

 Finally, combining the light-cone expansion (36) with the 
three-point CF (33) we get the “DGLAP representation” of 
the 4-point CF (29) 

A(L+ ,L−;x1⊥
, x2⊥

, x3⊥
, x4⊥

) = 
12−i∞

12+i∞

∫
dj

2π i 
c2 ( j,α s )  

× 
0

1

∫ dv
[1+ eiπ j ](L+L− ) j

 [x12⊥
2 v + x13⊥

2 v ]1+ j
x12

2 x34
2

[x13⊥
2 v + x14⊥

2 v ]2

⎛

⎝
⎜

⎞

⎠
⎟

12γ ( j ,αs )

(vv) j+12γ ( j ,αs )  (37) 

 In next Section we compare this formula with the 
“BFKL” representation of the same CF (29). 

4. BFKL REPRESENTATION OF 4-POINT 
CORRELATION FUNCTION 

 The 4-point CF (27) is a function of two conformal 
ratios. In the Regge limit (28) it is convenient to choose them 
as 

R = x13
2 x324

2

x12
2 x34

2  → ρ
2 ′ρ 2x1+x2+ + x3−x4−

x12⊥
2 x34⊥

2 ,      r = R 1− x14
2 x23

2

x13
2 y24

2 + 1
R

⎡

⎣
⎢

⎤

⎦
⎥

2

  

→ 
[x24⊥

2 x1+x3− + x2+y4−x12⊥
2 + x1+y4− − x23⊥

2 + x2+x3−x14⊥
2 ]2

x13⊥
2 x24⊥

2 x1+x2+x3−x4−

 (38) 

 It is easy to see that R increases with “energy” ( ~ ρ ′ρ ) 
while r  is energy-independent. 

 It was demonstrated that a 4-point CF in N = 4  SYM in 
the Regge limit and at large Nc  can be parametrized as a 
contribution of a Regge pole with J =ℵ(ν )  

A(xi ) =
s~ρ ′ρ →∞

 i2∫dν f+ (ℵ(λ,ν ))F(λ,ν )Ω(r,ν )Rℵ(λ ,ν )/2  (39) 

where f+ (ω ) =
eiπω −1
sinπω

 is a signature factor and 

Ω(r,ν ) = ν
2π 2

sin2νρ
sinhρ

,    coshρ = r
2

 (40) 

is a solution of the Laplace equation in H 3  hyperboloid 
(∂H3

2 + ν 2 +1)Ω(r,ν ) = 0 . The dynamics is described by the 

pomeron intercept ℵ(λ,ν )  and the “pomeron residue” 
F(λ,ν ) . This formula was proved in [8] (see also [9]) by 
considering the leading Regge pole in a conformal theory. 
Also, it was demonstrated up to the NLO level that the 
structure (39) is reproduced by the high-energy OPE in 
Wilson lines [10-13]. 

 The pomeron intercept in N = 4  SYM is known in the 
leading order and in the NLO [14] 

ℵ(ν ) = α sNc

2π
[χ(ν )+ α sNc

4π
δ (ν )] + O(α s

3)  (41) 

 We will not need the explicit form of the “pomeron 
residue” F(λ,ν )  but it can be easily restored from the NLO 
result for the CF of four protected operators TrZ 2  and TrZ 2  
calculated in Ref. [15]. 
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 Now let us take the DGLAP limit x12⊥
2 → 0  on the top of 

Regge limit (39). In this limit 

R = x13
2 x24

2

x12
2 x34

2  → 
x1+
x2+

x3−
x4−

x12⊥
2 x34⊥

2 ,       r → 
x12+

2 (x3−
x14⊥

2 − x4−
x13⊥

2 )2

x1+
x2+

x3−
x4−

x12⊥
2 x34⊥

2  

and 

Ω(r,ν ) → ν
2π 2i

(r−12+iν − r−12−iν )
 (42) 

so Eq. (39) reduces to 

A(L+ ,L−;x1⊥
, x2⊥

, x3⊥
, x4⊥

) = iα s
2

8
π 2L+L−  

× 
0

1

∫ dudv∫dν
tanhπν

ν 2cosh πν
( x12⊥

2 x34⊥
2 uuvv

[x13⊥
2 v + x14

2 v ]2 )
1
2
+iν L+

2 L−
2uuvv

x12⊥
2 x34⊥

2

⎛
⎝⎜

⎞
⎠⎟

ℵ(ν )/2

f+  

 Performing integral over u  one obtaines the “BFKL” 
representation of the CF (29) in the double (Regge plus 
x12⊥
2 → 0 ) limit: 

A(L+ ,L−;x1⊥
, x2⊥

, x3⊥
, x4⊥

) = α s
2

8
π 2

12−i∞

12+i∞

∫
dξ

2π i 
f (ℵ(ξ )) (L+L− )1+ℵ(ξ )

 

× 
0

1

∫ dv
(vv)1−ξ+ℵ(ξ )2 cosπξ

(ξ −12) 3sin πξ
 B(2 −ξ +ℵ(ξ )2)
[x13⊥

2 v + x14
2 v ]2+ℵ(ξ ) ( x12⊥

2 x34⊥
2

[x13⊥
2 v + x14

2 v ]2 )−ξ−ℵ(ξ )2    (43) 

where ξ ≡ 12 + iν . 

5. ANOMALOUS DIMENSIONS OF LIGHT-RAY 
OPERATORS 

 Let us compare integrals (37) and(43) for the correlation 
function (27). In both cases, the integrals run parallel to the 
imaginary axis but the singularities of the integrands lie on 
the negative real axis. We can close the integrals around 
negative real axis and compare the integrands near j = 0  
and ξ = 0 . We see that the integrands coincide if one makes 
an identification 

1+ℵ(ξ,α s ) = j,     γ ( j,α s ) = − 2ξ −ℵ(ξ )  (44) 

and 

c2 ( j,α s ) = α s
2

8
π 2 cosπξ

(ξ −12) 3sin πξ

Γ2 2 −ξ + (ℵξ )
2

⎛
⎝⎜

⎞
⎠⎟

Γ(4 − 2ξ +ℵ(ξ ))
∂ j
∂ξ

 (45) 

 If we write down the NLO pomeron intercept (41) as a 
Laurent series near ξ = 0  

ℵ(ξ,α s ) = α sNc

πξ
+ ...  (46) 

we can invert equations (44) and get anomalous dimension 
near ω = j −1→ 0  as a series in α sω  
 

 
ℵ(ξ )− 2ℵ(ξ ) ′ℵ (ξ )  α sNc

πξ
+ ζ (3)α s

2

ξ
+ ...    

⇒ γ j = −2α sNcπω  + [0 +ζ (3)ω ](α sNcπω ))3 + ...  (47) 

 In principle, the inversion of Eqs. (44) gives all orders in 
(α sNcπω ))

n  but in practice one gets the first few terms since 
the analytical form of the inversion is not known. 
 It is worth noting that the second of Eqs. (44) 
corresponds to the shift (5) 

ξ → ξ + 1
2
ℵ(ξ )  (48) 

in the integral (43). In the momentum space this shift comes 
from the change of the energy scale from the symmmetric 
QP  to non-symmetric Q2  while in the coordinate space it 
comes directly from the symmetric “energy scale” R, see Eq. 
(38). 
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